Bi-Hamiltonian structure as a shadow of non-Noether symmetry
George Chavchanidze
Department of Theoretical Physics,
A. Razmadze Institute of Mathematics,
1 Aleksidze Street, Tbilisi 0193, Georgia
In the present paper correspondence between non-Noether symmetries and bi-Hamiltonian structures
is disscussed. We show that in regular Hamiltonian systems presence of the global bi-Hamiltonian
structure is caused by symmetry of the space of solution. As an example well known bi-Hamiltonian
realisation of Korteweg-De Vries equation is disscussed.
Bi-Hamiltonian system; Non-Noether symmetry; Non-Cartan symmetry; Korteweg- De Vries equation.
70H33, 70H06, 53Z05
Georgian Math. J. 10 (2003) 057-061
Noether theorem, Lutzky's theorem, bi-Hamiltonian formalism and bidifferential calculi are often used
in generating conservation laws and all
this approaches are unified by the single idea — to construct conserved quantities out of some invariant
geometric object (generator of the symmetry — Hamiltonian vector field in Noether theorem,
non-Hamiltonian one in Lutzky's approach, closed 2-form in bi-Hamiltonian formalism and auxiliary
differential in case of bidifferential calculi). There is close relationship between later three approaches.
Some aspects of this relationship has been uncovered in
[3],
[4]. In the present paper it is
discussed how bi-Hamiltonian structure can be interpreted as a manifestation of symmetry of space of
solutions. Good candidate for this role is non-Noether symmetry. Such a symmetry is a group of
transformation that maps the space of solutions of equations of motion onto itself, but unlike the
Noether one, does not preserve action.
In the case of regular Hamiltonian system phase space is equipped with symplectic form
(closed
and nondegenerate
2-form) and time
evolution is governed by Hamilton's equation
where
is Hamiltonian vector field that defines time evolution
for any function
and
denotes contraction of
and
. Vector field is said to be (locally) Hamiltonian if it preserves
.
According to the Liouville's theorem
defined by
(1) automatically preserves
due to relation
One can show that group of transformations of phase space generated by any non-Hamiltonian vector
field
does not preserve action
because
(first term in r.h.s. does not vanish
since
is non-Hamiltonian and as far as
is time independent
and
are linearly independent 2-forms). As a result every non-Hamiltonian vector field
commuting with
leads to the non-Noether symmetry (since
preserves vector field tangent
to solutions
it maps the space of solutions onto itself). Any such
symmetry yields the following integrals of motion
[1],
[2],
[4],
[5]
where
and
is half-dimension of phase space.
It is interesting that for any non-Noether symmetry, triple
carries
bi-Hamiltonian structure (§4.12 in
[6],
[7]-
[9]).
Indeed
is closed
(
) and invariant
(
)
2-form (but generic
is degenerate). So every non-Noether
symmetry quite naturally endows dynamical system with bi-Hamiltonian structure.
Now let's discuss how non-Noether symmetry can be recovered from bi-Hamiltonian system. Generic
bi-Hamiltonian structure on phase space consists of Hamiltonian system and auxiliary
closed 2- form satisfying . Let us call it global
bi-Hamiltonian structure whenever is exact (there exists 1-form such that
) and is (globally) Hamiltonian vector field with respect to
().
As far as is nondegenerate there exists vector field
such that
.
By construction
Indeed
And
In other words
is Hamiltonian vector field, i. e.,
. So
is not generator of symmetry since it does not commute with
but one can
construct (locally) Hamiltonian counterpart of
(note that
itself is
non-Hamiltonian) —
with
Here integration along solution of Hamilton's equation, with fixed origin and end point in
,
is assumed. Note that
(10) defines
only locally and, as a result,
is a locally
Hamiltonian vector field, satisfying, by construction, the same commutation relations as
(namely
).
Finally one recovers generator of non-Noether symmetry — non-Hamiltonian vector field
commuting with
and satisfying
(thanks to Liouville's theorem
). So in case of regular Hamiltonian system every
global bi-Hamiltonian structure is naturally associated with (non-Noether) symmetry of space of
solutions.
As a toy example one can consider free particle
this Hamiltonian system can be extended to the bi-Hamiltonian one
clearly and preserves
. Conserved quantities are associated with this simple
bi-Hamiltonian structure.
This system can be obtained from the following (non-Noether) symmetry (infinitesimal form)
The earliest and probably the most well known bi-Hamiltonian structure is the one
discovered by F. Magri and assosiated with Korteweg- De Vries integrable hierarchy. The KdV equation
(zero boundary conditions for
and its derivatives are assumed) appears to be Hamilton's equation
where
(here
denotes variational derivative with respect to the field
) is the vector field tangent to the
solutions,
is the symplectic form (here
is defined by
) and the function
plays the role of Hamiltonian. This dynamical system possesses non-trivial symmetry — one-parameter
group of non-cannonical transformations
generated by the non-Hamiltonian vector
field
here first term represents non-Hamiltonian part of the generator of the symmetry, while the second one
is its Hamiltonian counterpart assosiated with
(
are defined in
(22), while
is defined by
.
The physical origin of this symmetry is unclear, however the
symmetry seems to be very important since it leads to the celebrated infinite sequence of conservation
laws in involution:
and ensures integrability of KdV equation. Second Hamiltonian realization of KdV equation discovered
by F. Magri
[7]
(where
and
) is a result of
invariance of KdV under aforementioned transformations
.
Author is grateful to Z. Giunashvili for constructive discussions and to G.
Jorjadze for support. This work was supported by INTAS (00-00561) and Scholarship from World
Federation of Scientists.
-
F. González-Gascón
Geometric foundations of a new conservation law discovered by Hojman
J. Phys. A: Math. Gen. 27 L59-60
1994
-
M. Lutzky
New derivation of a conserved quantity for Lagrangian systems
J. Phys. A: Math. Gen. 15 L721-722
1998
-
M. Crampin, W. Sarlet, G. Thompson
Bi-differential calculi and bi-Hamiltonian systems
J. Phys. A: Math. Gen. 33 No. 22 L177-180
2000
-
P. Guha
A Note on Bidifferential Calculi and Bihamiltonian systems
IHÉS preprint M/64
2000
-
G. Chavchanidze
Non-Noether symmetries in singular dynamical systems
Georgian Math. J. 8 (2001) 027-032
2001
-
N.M.J. Woodhouse
Geometric Quantization
Claredon, Oxford
1992
-
F. Magri
A simple model of the integrable Hamiltonian equation
J. Math. Phys. 19 no.5, 1156-1162
1978
-
A. Das
Integrable models
World Scientific Lecture Notes in Physics, vol. 30
1989
-
R. Brouzet
Sur quelques propriétés géométriques des variétés bihamiltoniennes
C. R. Acad. Sci. Paris 308, série I, 287-92
1989